38 Which set of radioactive emissions corresponds to the descriptions given in the table headings?

	high-speed electrons	high-speed helium nuclei	high-frequency photons
A	α	β	γ
B	α	γ	β
C	β	α	γ
D	β	γ	α

39 The nucleus of one of the isotopes of nickel is represented by ${ }_{28}^{60} \mathrm{Ni}$.
Which line in the table correctly describes a neutral atom of this isotope?

	number of protons	number of neutrons	number of orbital electrons
A	28	32	28
B	28	60	28
C	60	28	28
D	60	32	32

40 A nucleus of bohrium ${ }_{\mathrm{y}}^{\mathrm{x}} \mathrm{Bh}$ decays to mendelevium ${ }_{101}^{255} \mathrm{Md}$ by a sequence of three α-particle emissions.
bohrium ${ }_{y}^{x} \mathrm{Bh} \longrightarrow$ dubnium $+\alpha$
\longrightarrow lawrencium $+\alpha$
\longrightarrow mendelevium ${ }_{101}^{255} \mathrm{Md}+\alpha$
How many neutrons are there in a nucleus of ${ }_{\mathrm{y}}^{\mathrm{x}} \mathrm{Bh}$?
A 267
B 261
C 160
D 154

38 The numbers of protons, neutrons and nucleons in three nuclei are shown.

nucleus	number of protons	number of neutrons	number of nucleons
X	15	16	31
Y	15	17	32
Z	16	16	32

Which nuclei are isotopes of the same element?
A X and Y
B $\quad \mathrm{X}$ and Z
C Y and Z
D none of them

39 In an experiment to investigate the nature of the atom, a very thin gold film was bombarded with α-particles.

What pattern of deflection of the α-particles was observed?
A A few α-particles were deflected through angles greater than a right angle.
B All α-particles were deflected from their original path.
C Most α-particles were deflected through angles greater than a right angle.
D No α-particle was deflected through an angle greater than a right angle.

40 When a nucleus of ${ }_{92}^{238} \mathrm{U}$ absorbs a slow neutron it subsequently emits two β-particles. What is the resulting nucleus?
A $\quad{ }_{93}^{240} \mathrm{~Np}$
B $\quad{ }_{91}^{240} \mathrm{~Pa}$
C $\quad{ }_{94}^{239} \mathrm{Pu}$
D ${ }_{90}^{239} \mathrm{Th}$

38 In what way do the atoms of the isotopes ${ }_{6}^{12} \mathrm{C},{ }_{6}^{13} \mathrm{C}$ and ${ }_{6}^{14} \mathrm{C}$ differ?
A different charge
B different numbers of electrons
C different numbers of neutrons
D different numbers of protons

40 A nickel nucleus ${ }_{28}^{59} \mathrm{Ni}$ can be transformed by a process termed K-capture. In this process the nucleus absorbs an orbital electron.

If no other process is involved, what is the resulting nucleus?
A ${ }_{28}^{58} \mathrm{Ni}$
B $\quad{ }_{27}^{58} \mathrm{Co}$
C $\quad{ }_{27}^{59} \mathrm{Co}$
D $\quad{ }_{29}^{59} \mathrm{Cu}$

39 Strontium- $90\left({ }_{38}^{90} \mathrm{Sr}\right)$ is radioactive and emits β-particles.
Which equation could represent this nuclear decay?
A ${ }_{38}^{90} \mathrm{Sr} \rightarrow{ }_{39}^{90} \mathrm{Sr}+{ }_{-1}^{0} \beta$
B ${ }_{38}^{90} \mathrm{Sr} \rightarrow{ }_{39}^{90} \mathrm{Y}+{ }_{-1}^{0} \beta$
C ${ }_{38}^{90} \mathrm{Sr} \rightarrow{ }_{37}^{90} \mathrm{Rb}+{ }_{1}^{0} \beta$
D ${ }_{38}^{90} \mathrm{Sr} \rightarrow{ }_{37}^{90} \mathrm{Sr}+{ }_{1}^{0} \beta$

40 Protons and neutrons are thought to consist of smaller particles called quarks.
The 'up' quark has a charge of $\frac{2}{3} e$: a 'down' quark has a charge of $-\frac{1}{3} e$, where e is the elementary charge $\left(+1.6 \times 10^{-19} \mathrm{C}\right)$.

How many up quarks and down quarks must a proton contain?

	up quarks	down quarks
A	0	3
B	1	1
C	1	2
D	2	1

38 Which are the correct descriptions of a γ-ray and a β-particle?

	γ-ray	β-particle
A	high-speed electron	electromagnetic radiation
B	electromagnetic radiation	Helium-4 nucleus
C	electromagnetic radiation	high-speed electron
D	high-speed electron	Helium-4 nucleus

39 A certain nuclide, Uranium-235, has nucleon number 235, proton number 92 and neutron number 143. Data on four other nuclides are given below.

Which is an isotope of Uranium-235?

	nucleon number	proton number	neutron number
A	235	91	144
B	236	92	144
C	237	94	143
D	238	95	143

38 A nucleus of the nuclide ${ }_{94}^{241} \mathrm{Pu}$ decays by emission of a β-particle followed by the emission of an α-particle.

9702/01/M/J/04

Which of the nuclides shown is formed?
A $\quad{ }_{93}^{239} \mathrm{~Np}$
B $\quad{ }_{91} 239$
C $\quad{ }_{93}^{237} \mathrm{~Np}$
D $\quad{ }_{92} \mathrm{U} \mathrm{U}$

39 A thin gold foil is bombarded with α-particles as shown.

The results of this experiment provide information about the
A binding energy of a gold nucleus.
B energy levels of electrons in gold atoms.
C size of a gold nucleus.
D structure of a gold nucleus.

40 Isotopes of a given element all have the same
A charge/mass ratio.
B neutron number.
C nucleon number.
D proton number.

38 What is a correct order of magnitude estimate for the diameter of a typical atomic nucleus?
A $10{ }^{14} \mathrm{~m}$
B $\quad 10{ }^{18} \mathrm{~m}$
C $\quad 10{ }^{22} \mathrm{~m}$
D $\quad 10{ }^{26} \mathrm{~m}$

38 The symbol ${ }_{32}^{77} \mathrm{Ge}$ represents a nuclide of germanium that decays to a nuclide of arsenic (As) by emitting a β-particle.

9702/01/O/N/04

What is the symbol of this arsenic nuclide?
A $\quad{ }_{32}^{76}$ As
B $\quad{ }_{32}^{78} \mathrm{As}$
C $\quad{ }_{31}^{78} \mathrm{As}$
D $\quad{ }_{33} \mathrm{As}$

39 The table shows three properties of different types of ionising radiation.

	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
charge	0	$-1 e$	$+2 e$
mass	0	$\frac{1}{1840} u$	$4 u$
speed	c	$\sim 0.9 c$	$\sim 0.1 c$

What are the radiations \mathbf{X}, \mathbf{Y} and \mathbf{Z} ?

	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
A	alpha	beta	X-rays
B	gamma	alpha	beta
C	gamma	beta	alpha
D	X-rays	alpha	beta

40 Which conclusion can be drawn from the results of the experiment showing the scattering of α-particles by gold foil?

A Electrons orbit the atomic nucleus in well-defined paths.
B Nuclei of different isotopes contain different numbers of neutrons.
C The atomic nucleus contains protons and neutrons.
D The nucleus is very small compared with the size of the atom.

38 Which two nuclei contain the same number of neutrons?
A ${ }_{6}^{12} \mathrm{C}$ and ${ }_{6}^{14} \mathrm{C}$
B $\quad{ }_{7}^{16} \mathrm{~N}$ and ${ }_{8}^{15} \mathrm{O}$
C $\quad{ }_{11}^{23} \mathrm{Na}$ and ${ }_{12}^{24} \mathrm{Mg}$
D ${ }_{14}^{32} \mathrm{Si}$ and ${ }_{15}^{32} \mathrm{P}$

39 A student conducts an experiment using an α-particle source.
When considering safety precautions, what can be assumed to be the maximum range of α-particles in air?

A between 0 and 5 mm
B between 5 mm and 200 mm
C between 200 mm and 500 mm
D between 500 mm and 1000 mm

40 The following represents a sequence of radioactive decays involving two α-particles and one β-particle.

What is the nuclide X ?
A ${ }_{85}^{213} \mathrm{At}$
B $\quad{ }_{77}^{215} \mathrm{r}$
C $\quad{ }_{82}^{209} \mathrm{~Pb}$
D ${ }_{81}^{217} \mathrm{TI}$

38 An atomic nucleus emits a β-particle.
What change does this cause to the proton and nucleon numbers of the nucleus?

	proton number	nucleon number
A	-1	+1
B	0	-1
C	+1	-1
D	+1	0

40 A nuclear reaction is represented by the equation

$$
{ }_{8}^{16} \mathrm{O}+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{9}^{19} \mathrm{~F}+\mathrm{X} .
$$

What is particle X ?
A an α-particle
B a β-particle
C a neutron
D a proton

39 Two α-particles with equal energies are fired towards the nucleus of a gold atom.
Which diagram best represents their paths?

gold nucleus

gold nucleus

gold nucleus

D

39 The decay of a nucleus of neptunium is accompanied by the emission of a β-particle and γ-radiation.

9702/01/M/J/06
What effect (if any) does this decay have on the proton number and the nucleon number of the nucleus?

	proton number	nucleon number
A	increases	decreases
B	decreases	increases
C	unchanged	decreases
D	increases	unchanged

39 The symbol ${ }_{32}^{77} \mathrm{Ge}$ represents a nucleus of germanium that decays to a nucleus of arsenic by emitting a β-particle.

9702/01/M/J/07
What is the symbol of this arsenic nucleus?
A $\quad{ }_{32}^{76} \mathrm{As}$
B $\quad{ }_{32}^{78} \mathrm{As}$
C $\quad{ }_{31}^{78} \mathrm{As}$
D $\quad{ }_{33}^{77} \mathrm{As}$

40 Radon-220 is radioactive and decays to Polonium-216 with the emission of an α-particle. The equation for the radioactive decay is shown.

$$
{ }_{86}^{220} \mathrm{Rn} \rightarrow{ }_{84}^{216} \mathrm{Po}+{ }_{2}^{4} \mathrm{He}
$$

How many neutrons are in the radon and polonium nuclei?

	Rn	Po
A	86	84
B	134	132
C	220	212
D	220	216

38 Which statement concerning α-particles is correct?
A An α-particle has charge $+4 e$.
B An α-particle is a helium atom.
C When α-particles travel through air, they cause ionisation.
D When α-particles travel through a sheet of gold foil, they make the gold radioactive.

39 Where are electrons, neutrons and protons found in an atom?

	electrons	neutrons	protons
A	in the nucleus	in the nucleus	orbiting the nucleus
B	in the nucleus	orbiting the nucleus	in the nucleus
C	orbiting the nucleus	in the nucleus	orbiting the nucleus
D	orbiting the nucleus	in the nucleus	in the nucleus

40 Radon ${ }_{86}^{222} \mathrm{Rn}$ decays by α and β emission to bismuth ${ }_{83}^{214} \mathrm{Bi}$.
For the decay of each nucleus of radon, how many α and β particles are emitted?

	α particles	β particles
A	1	1
B	2	1
C	1	2
D	2	2

38 A detector is exposed to a radioactive source. Fluctuations in the count-rate are observed.
9702/01/M/J/07 What do these fluctuations indicate about radioactive decay?

A It is random.
B It is spontaneous.
C It is exponential.
D It is non-linear.

40 Each of the nuclei below is accelerated from rest through the same potential difference.
9702/01/M/J/07 Which one completes the acceleration with the lowest speed?
A ${ }_{1}^{1} \mathrm{H}$
B $\quad{ }_{2}^{4} \mathrm{He}$
C ${ }_{3}^{7} \mathrm{Li}$
D ${ }_{4}^{9} \mathrm{Be}$

36 How is it possible to distinguish between the isotopes of uranium?
9702/01/O/N/07
A Their nuclei have different charge and different mass, and they emit different particles when they decay.

B Their nuclei have different charge but the same mass.
C Their nuclei have the same charge but different mass.
D Their nuclei have the same charge and mass, but they emit different particles when they decay.

37 What is not conserved in nuclear processes?
9702/01/O/N/07
A energy and mass together
B nucleon number
C neutron number
D charge

40 The following particles are each accelerated from rest through the same potential difference.
Which one completes the acceleration with the greatest momentum?
A α-particle
B electron
C neutron
D proton

38 A thin gold foil is bombarded with α-particles as shown.

What can be deduced from this experiment?
A the binding energy of a gold nucleus
B the energy levels of electrons in gold atoms
C the small size of a gold nucleus
D the structure of a gold nucleus

40 A radioactive nucleus is formed by β-decay. This nucleus then decays by α-emission. $9702 / 01 / \mathrm{m} / \mathrm{J} / 08$
Which graph of proton number Z plotted against nucleon number N shows the β-decay followed by the α-emission?

D

39 What is the approximate mass of a nucleus of uranium?
A $10{ }^{15} \mathrm{~kg}$
B $\quad 10{ }^{20} \mathrm{~kg}$
C $\quad 10{ }^{25} \mathrm{~kg}$
D $\quad 10{ }^{30} \mathrm{~kg}$

39 A zirconium nucleus, ${ }_{40}^{100} \mathrm{Zr}$, is a β-emitter. The product nucleus is also a β-emitter. 9702/01/0/N/07 What is the final resulting nucleus of these two decays?
A ${ }_{38}^{100} \mathrm{Sr}$
B $\quad{ }_{42}^{100} \mathrm{Mo}$
C ${ }_{40}^{98} \mathrm{Zr}$
D $\quad{ }_{40}^{102} \mathrm{Zr}$

38 Which conclusion can be drawn from the results of the experiment showing the scattering of α-particles by gold foil?

9702/01/O/N/08
A Electrons orbit the atomic nucleus in well-defined paths.
B Nuclei of different isotopes contain different numbers of neutrons.
C The atomic nucleus contains protons and neutrons.
D The nucleus is very small compared with the size of the atom.

39 A nucleus Q has the notation ${ }_{x}^{y} Q$.
9702/01/O/N/08
Which of the following is an isotope of Q ?
A $\quad{ }_{x}^{1} \mathrm{Q}$
B $\times{ }_{1}^{y} Q$
C ${ }_{x+1}^{y} \mathrm{Q}$
D $\underset{x+1}{y} 1$
$40 \mathrm{~A}{ }_{92}^{238} \mathrm{U}$ nucleus decays in two stages to a ${ }_{91}^{234} \mathrm{~Pa}$ nucleus.
9702/01/O/N/08
What was emitted in these two stages?
A $\alpha+\beta$
B $\alpha+\gamma$
C $\beta+\beta$
D $\beta+\gamma$

36 How do the nucleon (mass) number and proton (atomic) number of two isotopes of an element compare?

9702/01/M/J/09

	nucleon number	proton number
A	different	different
B	different	same
C	same	different
D	same	same

37 Nuclear decay is both spontaneous and random.
When the count rate of a radioactive isotope is measured, the readings fluctuate.
Which row describes what the fluctuations demonstrate?

	spontaneous nature	random nature
A	no	no
B	no	yes
C	yes	no
D	yes	yes

38 Which two nuclei contain the same number of neutrons?
A ${ }_{6}^{12} \mathrm{C}$ and ${ }_{6}^{14} \mathrm{C}$
B $\quad{ }_{7}^{16} \mathrm{~N}$ and ${ }_{8}^{15} \mathrm{O}$
C $\quad{ }_{11}^{23} \mathrm{Na}$ and ${ }_{12}^{24} \mathrm{Mg}$
D $\quad{ }_{14}^{32} \mathrm{Si}$ and ${ }_{15}^{32} \mathrm{P}$

39 The calcium nuclide ${ }_{20}^{42} \mathrm{Ca}$ is formed by beta decay.
9702/01/M/J/09
What are the nucleon (mass) number and proton (atomic) number of the unstable nuclide that underwent beta decay to form the calcium nuclide?

	nucleon number	proton number
A	41	19
B	41	21
C	42	19
D	42	21

40 When boron-11 $\left({ }_{5}^{11} \mathrm{~B}\right)$ is bombarded with α-particles, a new nucleus is formed and a neutron is released.

9702/01/M/J/09
Which nuclear equation could represent this reaction?
A $\quad{ }_{5}^{11} \mathrm{~B}+{ }_{1}^{1} \mathrm{He} \rightarrow{ }_{6}^{11} \mathrm{C}+{ }_{0}^{1} \mathrm{n}$
B $\quad{ }_{5}^{11} \mathrm{~B}+{ }_{2}^{2} \mathrm{He} \rightarrow{ }_{7}^{12} \mathrm{~N}+{ }_{0}^{1} \mathrm{n}$
C $\quad{ }_{5}^{11} \mathrm{~B}+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{6}^{14} \mathrm{C}+{ }_{1}^{1} \mathrm{n}$
D $\quad{ }_{5}^{11} \mathrm{~B}+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{7}^{14} \mathrm{~N}+{ }_{0}^{1} \mathrm{n}$

37 The gold nucleus ${ }_{79}^{185} \mathrm{Au}$ undergoes alpha decay.
What are the nucleon (mass) number and proton (atomic) number of the nucleus formed by this decay?

	nucleon number	proton number
A	183	79
B	183	77
C	181	77
D	181	75

38 The nuclei of the isotopes of an element all contain the same number of a certain particle.
9702/11/O/N/09
What is this particle?
A electron
B neutron
C nucleon
D proton

40 Two α-particles with equal energies are fired towards the nucleus of a gold atom.
9702/11/O/N/09 Which diagram best represents their paths?

1 are absorbed to different extents in solids,
2 behave differently in an electric field,
3 behave differently in a magnetic field.
The diagrams illustrate these behaviours.
diagram 1

diagram 2

diagram 3

Which three labels on these diagrams refer to the same kind of radiation?
A L, P, X
B L, P, Z
C M, P, Z
D N, Q, X

36 The gold nucleus ${ }_{79}^{185} \mathrm{Au}$ undergoes alpha decay.
What are the nucleon (mass) number and proton (atomic) number of the nucleus formed by this decay?

	nucleon number	proton number
A	183	79
B	183	77
C	181	77
D	181	75

37 The nuclei of the isotopes of an element all contain the same number of a certain particle. 9702/12/O/N/09 What is this particle?

A electron
B neutron
C nucleon
D proton

38 Alpha, beta and gamma radiations
1 are absorbed to different extents in solids,
2 behave differently in an electric field,
3 behave differently in a magnetic field.
The diagrams illustrate these behaviours.
diagram 1

diagram 2

diagram 3

Which three labels on these diagrams refer to the same kind of radiation?
A L, P, X
B L, P, Z
C $\mathrm{M}, \mathrm{P}, \mathrm{Z}$
D $\mathrm{N}, \mathrm{Q}, \mathrm{X}$

39 Two α-particles with equal energies are fired towards the nucleus of a gold atom.
Which diagram best represents their paths?

D

37 What are the correct descriptions of a γ-ray and a β-particle?

	γ-ray	β-particle
A	high-speed electron	electromagnetic radiation
B	electromagnetic radiation	helium-4 nucleus
C	electromagnetic radiation	high-speed electron
D	high-speed electron	helium-4 nucleus

39 What is not conserved in nuclear processes?
A charge
B momentum
C the total number of neutrons
D the total number of nucleons

38 The grid shows a number of nuclides arranged according to the number of protons and the number of neutrons in each.

A nucleus of the nuclide ${ }_{3}^{8} \mathrm{Li}$ decays by emitting a β-particle.
What is the resulting nuclide?

number of protons	4					A	B	
	3				${ }_{3}^{6} \mathrm{Li}$	${ }_{3}^{7} \mathrm{Li}$	${ }_{3}^{8} \mathrm{Li}$	
	2		${ }_{2}^{3} \mathrm{He}$	${ }_{2}^{4} \mathrm{He}$			C	D
	1	${ }_{1}^{1} \mathrm{H}$	${ }_{1}^{2} \mathrm{H}$					
		0	1	2	3	4	5	6

40 The following represents a sequence of radioactive decays involving two α-particles and one β-particle.

9702/11/M/J/10

$$
{ }_{85}^{217} \mathrm{At} \xrightarrow{\alpha} \mathrm{~V} \xrightarrow{\alpha} \mathrm{~W} \xrightarrow{\beta} \mathrm{X}
$$

What is the nuclide X ?
A ${ }_{85}^{213} \mathrm{At}$
B $\quad{ }_{77}^{215} \mathrm{Ir}$
C $\quad{ }_{82}^{209} \mathrm{~Pb}$
D $\quad{ }_{81}^{217} \mathrm{Tl}$

37 The grid shows a number of nuclides arranged according to the number of protons and the number of neutrons in each.

A nucleus of the nuclide ${ }_{3}^{8}$ Li decays by emitting a β-particle.
What is the resulting nuclide?

number of protons	4					A	B	
	3				${ }_{3}^{6} \mathrm{Li}$	${ }_{3}^{7} \mathrm{Li}$	${ }_{3}^{8} \mathrm{Li}$	
	2		${ }_{2}^{3} \mathrm{He}$	${ }_{2}^{4} \mathrm{He}$			C	D
	1	${ }_{1}^{1} \mathrm{H}$	${ }_{1}^{2} \mathrm{H}$					
		0	1	2	3	4	5	6

38 The following represents a sequence of radioactive decays involving two α-particles and one β-particle.

What is the nuclide X ?
A ${ }_{85}^{213} \mathrm{At}$
B $\quad{ }_{77}^{215} \mathrm{Ir}$
C $\quad{ }_{82}^{209} \mathrm{~Pb}$
D $\quad{ }_{81}^{217} \mathrm{Tl}$

39 What are the correct descriptions of a γ-ray and a β-particle?

	γ-ray	β-particle
A	high-speed electron	electromagnetic radiation
B	electromagnetic radiation	helium-4 nucleus
C	electromagnetic radiation	high-speed electron
D	high-speed electron	helium-4 nucleus

40 What is not conserved in nuclear processes?
A charge
B momentum
C the total number of neutrons
D the total number of nucleons

40 The grid shows a number of nuclides arranged according to the number of protons and the number of neutrons in each.

A nucleus of the nuclide ${ }_{3}^{8} \mathrm{Li}$ decays by emitting a β-particle.
What is the resulting nuclide?

number of protons	4					A	B		
	3				${ }_{3}^{6} \mathrm{Li}$	${ }_{3}^{7} \mathrm{Li}$	${ }_{3}^{8} \mathrm{Li}$		
	2		${ }_{2}^{3} \mathrm{He}$	${ }_{2}^{4} \mathrm{He}$			C		
	1	${ }_{1}^{1} \mathrm{H}$	${ }_{1}^{2} \mathrm{H}$						
		0	1	2	3	4	5		

Nuclear Physics

39 The following represents a sequence of radioactive decays involving two α-particles and one β-particle.

9702/13/M/J/10

$$
{ }_{85}^{217} \mathrm{At} \xrightarrow{\alpha} \mathrm{~V} \xrightarrow{\alpha} \mathrm{w} \xrightarrow{\beta} x
$$

What is the nuclide X ?
A ${ }_{85}^{213} \mathrm{At}$
B $\quad{ }_{77}^{215} \mathrm{Ir}$
C $\quad{ }_{82}^{209} \mathrm{~Pb}$
D ${ }_{81}^{217} \mathrm{Tl}$

37 What is not conserved in nuclear processes?
A charge
B momentum
C the total number of neutrons
D the total number of nucleons

38 What are the correct descriptions of a γ-ray and a β-particle?

	γ-ray	β-particle
A	high-speed electron	electromagnetic radiation
B	electromagnetic radiation	helium-4 nucleus
C	electromagnetic radiation	high-speed electron
D	high-speed electron	helium-4 nucleus

39 When a magnesium nucleus ${ }_{12}^{25} \mathrm{Mg}$ is hit by a gamma ray, a sodium nucleus ${ }_{11}^{24} \mathrm{Na}$ is formed and another particle is emitted.

What are the nucleon number (mass number) and proton number (atomic number) of the other particle produced in this nuclear reaction?

9702/11/O/N/10

	nucleon number	proton number
A	0	-1
B	0	1
C	1	-1
D	1	1

40 Uranium-238, ${ }_{92}^{238} \mathrm{U}$, decays by α-emission into a daughter product which in turn decays by β-emission into a grand-daughter product.

9702/13/M/J/11
What is the grand-daughter product?
A $\quad{ }_{90}^{234} \mathrm{Th}$
B $\quad{ }_{91}^{234} \mathrm{~Pa}$
C $\quad{ }_{92}^{234} \mathrm{U}$
D ${ }_{90}^{230} \mathrm{Th}$

38 Uranium- 235 may be represented by the symbol ${ }_{92}^{235} \mathrm{U}$.
Which row shows the numbers of nucleons, protons and neutrons in a ${ }_{92}^{235} \mathrm{U}$ nucleus?

	nucleons	protons	neutrons
A	92	235	143
B	143	92	235
C	235	92	143
D	235	143	92

40 Which nuclear equation shows the beta decay of a nucleus of argon (Ar) into potassium (K)?
A $\quad{ }_{21}^{44} \mathrm{Ar} \rightarrow{ }_{19}^{40} \mathrm{~K}+{ }_{2}^{4} \mathrm{He}$
B $\quad{ }_{20}^{40} \mathrm{Ar} \rightarrow{ }_{19}^{40} \mathrm{~K}+{ }_{1}^{0} \mathrm{e}$
C $\quad{ }_{18}^{40} \mathrm{Ar} \rightarrow{ }_{19}^{40} \mathrm{~K}+{ }_{1}^{0} \mathrm{e}$
D $\quad{ }_{19}^{40} \mathrm{Ar} \rightarrow{ }_{19}^{40} \mathrm{~K}+{ }_{0}^{0} \gamma$

40 A counter recording radioactive decays from a radioactive source gives the following counts in equal intervals of time.

9702/12/O/N/10

time/min	counts
$0-10$	424
$10-20$	395
$20-30$	413
$30-40$	363
$40-50$	366
$50-60$	294
$60-70$	301
$70-80$	253
$80-90$	212

What can be deduced from these readings?
A that radioactivity is random and that the half-life is 90 minutes
B that radioactivity is random and that the half-life is uncertain
C that radioactivity is spontaneous and that the half-life is 90 minutes
D that radioactivity is spontaneous and that the half-life is uncertain

38 In the Rutherford scattering experiment, α-particles were fired at a thin gold foil. A small proportion of the α-particles were deflected through large angles.

9702/12/O/N/10
Which statement gives the correct conclusion that could be drawn directly from these results?
A The atom is made up of electrons, protons and neutrons.
B The nucleus is at the centre of the atom.
C The nucleus is made up of protons and neutrons.
D The atom contains a very small, charged nucleus.

39 Which statement about the nuclei of the atoms of an element is correct?
A Every nucleus of an element contains an equal number of neutrons and protons.
B Every nucleus of an element contains the same number of neutrons as all others of that element, but the number of protons may differ.

C Every nucleus of an element contains the same number of protons as all others of that element, but the number of neutrons may differ.

D The number of protons in a nucleus differs from isotope to isotope of an element, as do the number of neutrons.

40 When a magnesium nucleus ${ }_{12}^{25} \mathrm{Mg}$ is hit by a gamma ray, a sodium nucleus ${ }_{11}^{24} \mathrm{Na}$ is formed and another particle is emitted.

9702/13/O/N/10
What are the nucleon number (mass number) and proton number (atomic number) of the other particle produced in this nuclear reaction?

	nucleon number	proton number
A	0	-1
B	0	1
C	1	-1
D	1	1

38 The first artificial radioactive substance was made by bombarding aluminium, ${ }_{13}^{27} \mathrm{~A} l$, with α-particles. This produced an unstable isotope of phosphorus, ${ }_{15}^{30} \mathrm{P}$.

What was the by-product of this reaction?
A an α-particle
B a β-particle
C a γ-ray
D a neutron

38 Which nuclear equation shows the beta decay of a nucleus of argon (Ar) into potassium (K)?
A $\quad{ }_{21}^{44} \mathrm{Ar} \rightarrow{ }_{19}^{40} \mathrm{~K}+{ }_{2}^{4} \mathrm{He}$
B $\quad{ }_{20}^{40} \mathrm{Ar} \rightarrow{ }_{19}^{40} \mathrm{~K}+{ }_{1}^{0} \mathrm{e}$
C ${ }_{18}^{40} \mathrm{Ar} \rightarrow{ }_{19}^{40} \mathrm{~K}+{ }_{1}^{0} \mathrm{e}$
D $\quad{ }_{19}^{40} \mathrm{Ar} \rightarrow{ }_{19}^{40} \mathrm{~K}+{ }_{0}^{0} \gamma$

39 Uranium- 235 may be represented by the symbol ${ }_{92}^{235} \mathrm{U}$.
Which row shows the numbers of nucleons, protons and neutrons in a ${ }_{92}^{235} \mathrm{U}$ nucleus?

	nucleons	protons	neutrons
A	92	235	143
B	143	92	235
C	235	92	143
D	235	143	92

39 The uranium nucleus ${ }_{92}^{238} \mathrm{U}$ undergoes α-decay, producing nucleus X .
Nucleus X undergoes β-decay, producing nucleus Y .
For nucleus Y , what are the values of the proton number and nucleon number?

	proton number	nucleon number
A	89	234
B	89	236
C	91	234
D	91	236

40 Radon-220 is radioactive and decays to polonium-216 with the emission of an α-particle. The equation for the radioactive decay is shown.

9702/12/M/J/11

$$
{ }_{86}^{220} \mathrm{Rn} \rightarrow{ }_{84}^{216} \mathrm{Po}+{ }_{2}^{4} \mathrm{He}
$$

How many neutrons are in the radon and polonium nuclei?

	Rn	Po
A	86	84
B	134	132
C	220	212
D	220	216

39 Uranium-238, ${ }_{92}^{238} \mathrm{U}$, decays by α-emission into a daughter product which in turn decays by β-emission into a grand-daughter product.

9702/11/M/J/11
What is the grand-daughter product?
A ${ }_{90}^{234} \mathrm{Th}$
B $\quad{ }_{91}^{234} \mathrm{~Pa}$
C $\quad{ }_{92}^{234} \mathrm{U}$
D $\quad{ }_{90}^{230} \mathrm{Th}$

40 Which statement about nuclei is correct? 9702/11/M/J/11
A Different isotopic nuclei have different proton numbers.
B For some nuclei, the nucleon number can be less than the proton number.
C In some nuclear processes, mass-energy is not conserved.
D Nucleon numbers of nuclei are unchanged by the emission of β-particles.

38 Which statement about nuclei is correct?
A Different isotopic nuclei have different proton numbers.
B For some nuclei, the nucleon number can be less than the proton number.
C In some nuclear processes, mass-energy is not conserved.
D Nucleon numbers of nuclei are unchanged by the emission of β-particles.

39 The first artificial radioactive substance was made by bombarding aluminium, ${ }_{13}^{27} \mathrm{Al}$, with α-particles. This produced an unstable isotope of phosphorus, ${ }_{15}^{30} \mathrm{P}$.

9702/13/M/J/11

What was the by-product of this reaction?
A an α-particle
B a β-particle
C a γ-ray
D a neutron

39 An experiment in which α-particles were deflected by a gold foil produced new insights into the structure of the atom.

9702/11/M/J/12
Which conclusion can be drawn from the results of the experiment?
A Atomic nuclei occupy a very small fraction of the volume of an atom.
B Electrons orbit the atomic nucleus.
C Some atoms of the same element contain different numbers of neutrons.
D The atomic nucleus contains protons and neutrons.

38 The circuit below has a current I in the resistor R .

What must be known in order to determine the value of I ?
A e.m.f. of the power supply
B resistance of resistor S
C Kirchhoff's first law
D Kirchhoff's second law

39 Which statement concerning α-particles is correct?
A An α-particle has charge $+4 e$.
B An α-particle is a helium atom.
C When α-particles travel through air, they cause ionisation.
D When α-particles travel through a sheet of gold foil, they make the gold radioactive.

40 A nucleus of the nuclide ${ }_{94}^{241} \mathrm{Pu}$ decays by emission of a β-particle followed by the emission of an α-particle.

9702/12/O/N/11
Which nucleus is formed?
A $\quad{ }_{93}^{239} \mathrm{~Np}$
B ${ }_{91}^{239} \mathrm{~Pa}$
C $\quad{ }_{93}^{237} \mathrm{~Np}$
D $\quad{ }_{92}^{237} \mathrm{U}$

40 Radon ${ }_{86}^{222} \mathrm{Rn}$ is the start of a decay chain that forms bismuth ${ }_{83}^{214} \mathrm{Bi}$ by alpha and beta emission. 9702/12/M/J/12
For the decay of each nucleus of radon, how many α particles and β particles are emitted?

	α particles	β particles
A	1	1
B	2	1
C	1	2
D	2	2

39 Nuclear decay is both spontaneous and random in nature.
Which row gives the correct experimental evidence for these properties?

	spontaneous nature of decay	random nature of decay
A	the decay rate is not affected by pressure	the decay rate is not affected by
B	the decay rate is not affected by pressure	the rate at which radiation is received at a counter fluctuates
C	the decay rate is not affected by temperature	the decay rate is not affected by pressure
D	the rate at which radiation is received at a counter fluctuates	the decay rate is not affected by pressure

40 Thorium-234 (${ }_{90}^{234} \mathrm{Th}$) decays by β-emission into a daughter product which in turn decays by further β-emission into a granddaughter product.

9702/11/M/J/12
Which letter in the diagram represents the granddaughter product?

40 An experiment in which α-particles were deflected by a gold foil produced new insights into the structure of the atom.

Which conclusion can be drawn from the results of the experiment?
A Atomic nuclei occupy a very small fraction of the volume of an atom.
B Electrons orbit the atomic nucleus.
C Some atoms of the same element contain different numbers of neutrons.
D The atomic nucleus contains protons and neutrons.

39 Thorium-234 (${ }_{90}^{234} \mathrm{Th}$) decays by β-emission into a daughter product which in turn decays by further β-emission into a granddaughter product.

9702/13/M/J/12

Which letter in the diagram represents the granddaughter product?

nucleon number

39 A material contains a radioactive isotope that disintegrates solely by the emission of α-particles at a rate of $100 \mathrm{~s}{ }^{1}$.

Which statement about this material is correct?
A The number of atoms in the material diminishes at a rate of $100 \mathrm{~s}{ }^{1}$.
B The number of neutrons in the material diminishes at a rate of $100 \mathrm{~s}{ }^{1}$.
C The number of nucleons in the material diminishes at a rate of $400 \mathrm{~s}^{1}$.
D The number of protons in the material diminishes at a rate of $100 \mathrm{~s}{ }^{1}$.

40 In a radioactive decay series, three successive decays each result in a particle being emitted.
The first decay results in the emission of a β-particle. The second decay results in the emission of an α-particle. The third decay results in the emission of another β-particle.

9702/11/O/N/12

Nuclides P and S are compared.
Which statement is correct?
A P and S are identical in all respects.
B P and S are isotopes of the same element.
C S is a different element of lower atomic number.
D S is a different element of reduced mass.

38 A class of students used dice to simulate radioactive decay. After each throw, those dice showing a ' 6 ' were removed. The graph shows the results.

What could the scatter of points about the best-fit curve represent for actual radioactive decay?
A background count not being taken into account
B more than one type of radiation being present
C the random nature of radioactive decay
D the spontaneous nature of radioactive decay

39 Which statement about alpha, beta and gamma radiation is correct?
A Alpha radiation has the greatest ionising power.
B Beta radiation has the greatest ionising power.
C Gamma radiation has the greatest ionising power.
D Alpha, beta and gamma radiation have nearly equal ionising powers.

40 A different nucleus can be formed by bombarding a stable nucleus with an energetic α-particle.
9702/12/O/N/12 ${ }_{11}^{23} \mathrm{Na}$ is bombarded with an energetic α-particle.

What could be the products of this nuclear reaction?
A $\quad{ }_{10}^{25} \mathrm{Ne}+$ neutron
B ${ }_{11}^{25} \mathrm{Na}+$ proton
C ${ }_{12}^{26} \mathrm{Mg}+\beta$
D $\quad{ }_{13}^{27} \mathrm{~A} l+\gamma$

38 A nuclear isotope emits radiation which is detected by a Geiger-Müller tube held at a distance of about 10 cm from the radioactive source. The radiation is stopped completely by a 2 mm thick sheet of lead.

What can be deduced from this information about the emission from the isotope?
A It could be alpha and beta radiation, but not gamma radiation.
B It could be alpha and gamma radiation, but not beta radiation.
C It could be beta and gamma radiation, but not alpha radiation.
D It could be alpha, beta and gamma radiation.

39 What remains constant during β-emission from a number of identical nuclei in a substance?
A energy of the β-particles
B neutron number of the nuclei
C nucleon number of the nuclei
D proton number of the nuclei

40 The graph of neutron number against proton number represents a sequence of radioactive decays.

9702/13/O/N/12

Nucleus X is at the start of the sequence and, after the decays have occurred, nucleus Y is formed.

9702/12/O/N/12
What is emitted during the sequence of decays?
A one α-particle followed by one β-particle
B one α-particle followed by two β-particles
C two α-particles followed by two β-particles
D two β-particles followed by one α-particle

38 A nickel nucleus ${ }_{28}^{59} \mathrm{Ni}$ can be transformed by a process termed K-capture. In this process the nucleus absorbs an orbital electron.

If no other process is involved, what is the resulting nucleus?
A $\quad{ }_{28}^{58} \mathrm{Ni}$
B $\quad{ }_{27}{ }^{58} \mathrm{Co}$
C $\quad{ }_{27}{ }^{59} \mathrm{Co}$
D $\quad{ }_{29}^{59} \mathrm{Cu}$

39 It was once thought that the mass of an atom is spread uniformly through the volume of the atom. When α-particles are directed at a piece of gold foil, the results led scientists to believe instead that nearly all the mass of the gold atom is concentrated at a point inside the atom. $9702 / 11 / \mathrm{M} / \mathrm{J} / 13$

Which effect is possible only if nearly all the mass of the gold atom is concentrated at a point?
A a few α-particles bounce back
B most α-particles are only slightly deflected
C some α-particles pass through without any deflection
D some α-particles are absorbed

40 Which pair of nuclei are isotopes of one another?

	nucleon number	number of neutrons
A	186	112
	180	118
B	186	112
	182	108
C	184	110
	187	110
D	186	110
	186	112

40 An actinium nucleus has a nucleon number of 227 and a proton number of 89. It decays to form a radium nucleus, emitting a beta particle and an alpha particle in the process.

9702/12/M/J/13
What are the nucleon number and the proton number of this radium nucleus?

	nucleon number	proton number
A	223	87
B	223	88
C	224	87
D	225	86

39 What is the approximate mass of an alpha particle?
A $10{ }^{28} \mathrm{~kg}$
B $\quad 10{ }^{26} \mathrm{~kg}$
C $\quad 10{ }^{24} \mathrm{~kg}$
D $\quad 10{ }^{22} \mathrm{~kg}$

40 A radioactive nucleus is formed by β-decay. This nucleus then decays by α-emission. $9702 / 13 / \mathrm{M} / \mathrm{J} / 13$
Which graph of nucleon number N plotted against proton number Z shows the β-decay followed by the α-emission?

A

C

B

D

39 The decay of a nucleus of neptunium is accompanied by the emission of a β-particle and γ-radiation.

9702/13/M/J/13
What effect (if any) does this decay have on the proton number and on the nucleon number of the nucleus?

	proton number	nucleon number
A	increases	decreases
B	decreases	increases
C	unchanged	decreases
D	increases	unchanged

38 Scientists investigating the count rate from a radioactive source observed that the count rate fluctuates.

What do these fluctuations imply about the nature of radioactive decay?
A It involves atomic nuclei.
B It is predictable.
C It is random.
D It is spontaneous.

39 When α-particles are fired at a thin metal foil, most of the particles pass straight through but a few are deflected by a large angle.

9702/11/O/N/13
Which change would increase the proportion of α-particles deflected by a large angle?
A using α-particles with greater kinetic energy
B using a foil made of a metal with fewer protons in its nuclei
C using a double thickness foil
D using an alpha source with a higher activity

40 Plutonium-239 ($\left.{ }_{94}^{239} \mathrm{Pu}\right)$ decays by emitting α-radiation.
9702/11/O/N/13
Which nuclide is formed from one of these decay reactions? (The product nuclides are represented by X.)
A ${ }_{92}^{235} \mathrm{x}$
B $\quad{ }_{92}^{237} \mathrm{X}$
C $\quad{ }_{93}^{239} \mathrm{X}$
D $\quad{ }_{95}^{239} \mathrm{X}$

39 A nucleus of the nuclide ${ }_{89}^{228} \mathrm{Ac}$ decays by emitting a beta particle. The nuclear equation below represents this decay.

9702/13/O/N/13

$$
{ }_{89}^{228} \mathrm{Ac} \rightarrow{ }_{\mathrm{Y}}^{\mathrm{X}} \mathrm{Th}+\beta
$$

Which pair of values of X and Y is correct?

	X	Y
A	224	87
B	224	89
C	228	88
D	228	90

40 Two α-particles with equal energies are deflected by a large nucleus.
Which diagram best represents their paths?
A

C

D

38 A nucleus X decays into a nucleus Y by emitting an alpha particle followed by two beta particles. Which statement about this nuclear decay is correct?

A Beta particle decay occurs when a proton changes into a neutron.
B Nucleus Y has the same nucleon number as nucleus X .
C Nucleus Y is an isotope of nucleus X.
D The total mass of the products is equal to the mass of the initial nucleus X .
39 A slow-moving neutron collides with a nucleus of uranium-235. This results in a nuclear reaction that is represented by the following nuclear equation

9702/12/M/J/14

$$
{ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{60}^{154} \mathrm{Nd}+{ }_{32}^{80} \mathrm{Ge}+\mathrm{x}
$$

where x represents one or more particles.
What does x represent?
A one neutron
B two electrons
C two neutrons
D two protons

40 The first artificial radioactive substance was made by bombarding aluminium, ${ }_{13}^{27} \mathrm{~A} l$, with α-particles. This produced an unstable isotope of phosphorus, ${ }_{15}^{30} \mathrm{P}$.

9702/12/M/J/14
What was the by-product of this reaction?
A an α-particle
B a β-particle
C a neutron
D a proton

39 An isotope of thorium has a nucleon number of 232 and a proton number of 90 . It decays to form another isotope of thorium with a nucleon number of 228.

How many alpha particles and beta particles are emitted by a nucleus of thorium during this decay?

	alpha particles	beta particles
A	0	4
B	1	0
C	1	2
D	2	1

40 Four nuclei are represented below.

$$
\begin{array}{llll}
{ }_{14}^{28} \mathrm{E} & { }_{15}^{25} \mathrm{G} & { }_{12}^{25} \mathrm{M} & { }_{13}^{24} \mathrm{Q}
\end{array}
$$

Which statement about these nuclei is correct?
A An uncharged atom of element Q has 24 orbital electrons.
B Nucleus M could transform into Q by emitting a beta particle.
C Nuclei G and M are isotopes of the same element.
D When E absorbs a neutron and then emits an alpha particle, nucleus E transforms into M.

40 The grid shows a number of nuclides arranged according to the number of protons and the number of neutrons in each.

A nucleus of the nuclide ${ }_{3}^{8}$ Li decays by emitting a β-particle.
What is the resulting nuclide?

number of protons	4					A	B	
	3				${ }_{3}^{6} \mathrm{Li}$	${ }_{3}^{7} \mathrm{Li}$	${ }_{3}^{8} \mathrm{Li}$	
	2		${ }_{2}^{3} \mathrm{He}$	${ }_{2}^{4} \mathrm{He}$			C	D
	1	${ }_{1}^{1} \mathrm{H}$	${ }_{1}^{2} \mathrm{H}$					
		0	1	2	3	4	5	6

38 In 2002, two-proton radioactive decay of an isotope of iron, ${ }_{26}^{45} \mathrm{Fe}$, was observed. 9702/11/M/J/14 What could be the resulting product?
A $\quad{ }_{26}^{43} \mathrm{Fe}$
B $\quad{ }_{24}^{43} \mathrm{Cr}$
C $\quad{ }_{24}^{45} \mathrm{Cr}$
D $\quad{ }_{28}^{47} \mathrm{Ni}$
$39 \mathrm{U}^{++}$is a doubly-ionised uranium atom. The uranium atom has a nucleon number of 235 and a proton number of 92 .

9702/11/M/J/14
In a simple model of the atom, how many particles are in this ionised atom?
A 235
B 325
C 327
D 329

37 Alpha, beta and gamma radiations have various depths of penetration in matter and different charges.

9702/11/M/J/14
Which row best summarises the penetration and charge of each radiation?

	alpha	beta	gamma
A	absorbed by a sheet of card negative charge	absorbed by several mm of aluminium no charge	not fully absorbed by several cm of lead no charge
B	absorbed by a sheet of card negative charge	absorbed by several mm of aluminium positive charge	not fully absorbed by several cm of lead no charge
C	absorbed by a sheet of card positive charge	absorbed by several mm of aluminium negative charge	not fully absorbed by several cm of lead no charge
D	absorbed by several mm of aluminium positive charge	not fully absorbed by several cm of lead negative charge	absorbed by a sheet of card no charge

38 Which statement about α-particles is correct?
A α-particles emitted from a single radioactive isotope have a continuous distribution of energies.

B $\quad \alpha$-particles have less ionising power than β-particles.
C The charge of an α-particle is $+1.60 \times 10{ }^{19} \mathrm{C}$.
D The speeds of α-particles can be as high as $1.5 \times 10^{7} \mathrm{~ms}{ }^{1}$.

39 The isotope ${ }_{86}^{222} \mathrm{Rn}$ decays in a sequence of emissions to form the isotope ${ }_{82}^{206} \mathrm{~Pb}$. At each stage of the decay sequence, it emits either an α-particle or a β-particle.

9702/11/O/N/14
What is the number of stages in the decay sequence?
A 4
B 8
C 16
D 20

40 What is the approximate mass of a nucleus of uranium?
A $10{ }^{15} \mathrm{~kg}$
B $\quad 10^{20} \mathrm{~kg}$
C $\quad 10{ }^{25} \mathrm{~kg}$
D $\quad 10{ }^{30} \mathrm{~kg}$

38 The nucleus of a radioactive isotope of an element emits an alpha particle. The daughter nucleus then emits a beta particle and then the daughter nucleus of that reaction emits another beta particle.

Which statement describes the final nuclide that is formed?
A It is a different isotope of the original element.
B It is a nuclide of a different element of higher proton number.
C It is a nuclide of the same element but with different proton number.
D It is identical to the original nuclide.

39 A nuclear reaction is shown.

$$
{ }_{92}^{238} \mathrm{U}+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{94}^{241} \mathrm{Pu}+X
$$

What is product X ?
A an alpha particle
B an electron
C a neutron
D a proton

40 The nuclide ${ }_{86}^{222} \mathrm{Rn}$ decays in a sequence of stages to form the nuclide ${ }_{82}^{206} \mathrm{~Pb}$.
Four of the nuclides formed in the sequence are α-particle emitters. The others are β-particle emitters.

How many nuclides formed in the decay sequence are β-particle emitters?
A 2
B 4
C 8
D 12

1 are absorbed to different extents in solids,
2 behave differently in an electric field,
3 behave differently in a magnetic field.
The diagrams illustrate these behaviours.
diagram 1

diagram 2

diagram 3

Which three labels on these diagrams refer to the same kind of radiation?
A L, P, X
B L, P, Z
C M, P, Z
D N, Q, X

40 The nuclear equation for a fission reaction is shown below.

$$
{ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{x}^{93} \mathrm{Rb}+{ }_{55}^{141} \mathrm{Cs}+\mathrm{Y}_{0}^{1} \mathrm{n}
$$

What are the values of X and Y ?

	X	Y
A	37	0
B	37	1
C	37	2
D	38	2

39 A radioactive substance contains a number of identical nuclei that emit β-particles. $9702 / 12 / \mathrm{M} / \mathrm{J} / 15$ Which property of these nuclei remains unaltered by the emission?

A charge
B neutron number
C nucleon number
D proton number

40 A uranium- 238 nucleus, ${ }_{92}^{238} \mathrm{U}$, undergoes nuclear decays to form uranium- $234,{ }_{92}^{234} \mathrm{U}$.
9702/12/M/J/15
Which series of decays could give this result?
A emission of four β-particles
B emission of four γ-rays
C emission of one α-particle and two β-particles
D emission of two α-particles and eight β-particles

39 When α-particles are directed at gold leaf
1 almost all α-particles pass through without deflection,
2 a few α-particles are deviated through large angles.
What are the reasons for these effects?

	1	2
A	most α-particles have enough energy to pass right through the gold leaf	gold is very dense so a few low energy α-particles bounce back from the gold surface B
most α-particles miss all gold atoms	a few α-particles bounce off gold atoms	
C	the gold nucleus is very small so	occasionally the path of an α-particle is
most α-particles miss all nuclei	close to a nucleus	
D	the positive charge in an atom is not concentrated enough to deflect an α-particle	occasionally an α-particle experiences many small deflections in the same direction

