38 Which set of radioactive emissions corresponds to the descriptions given in the table headings?

	high-speed electrons	high-speed helium nuclei	high-frequency photons
Α	α	β	γ
В	α	γ	β
С	β	α	γ
D	β	γ	α

39 The nucleus of one of the isotopes of nickel is represented by $\frac{60}{28}$ Ni.

9702/1/M/J/02

Which line in the table correctly describes a neutral atom of this isotope?

	number of protons	number of neutrons	number of orbital electrons
Α	28	32	28
В	28	60	28
С	60	28	28
D	60	32	32

40 A nucleus of bohrium ${}^{x}_{y}$ Bh decays to mendelevium ${}^{255}_{101}$ Md by a sequence of three α -particle emissions.

 $\text{bohrium }_y^x Bh \longrightarrow \text{dubnium } + \alpha$

 \longrightarrow lawrencium + α

 $\longmapsto \text{mendelevium} \xrightarrow{255}_{101} \text{Md} + \alpha$

How many neutrons are there in a nucleus of $_{v}^{x}Bh$?

- **A** 267
- **B** 261
- **C** 160
- **D** 154

PhysicsAndMathsTutor.com

nucleus	number of protons	number of neutrons	number of nucleons
Х	15	16	31

38 The numbers of protons, neutrons and nucleons in three nuclei are shown.

Which nuclei are isotopes of the same element?

Υ

Ζ

A X and Y B X and Z C Y and Z D none of them

15

16

39 In an experiment to investigate the nature of the atom, a very thin gold film was bombarded with α -particles.

17

16

32

32

What pattern of deflection of the α -particles was observed?

- **A** A few α -particles were deflected through angles greater than a right angle.
- **B** All α -particles were deflected from their original path.
- **C** Most α -particles were deflected through angles greater than a right angle.
- **D** No α -particle was deflected through an angle greater than a right angle.
- **40** When a nucleus of $^{238}_{92}$ U absorbs a slow neutron it subsequently emits two β -particles. $_{9702/1/O/N/02}$

What is the resulting nucleus?

- **A** ²⁴⁰₉₃Np **B** ²⁴⁰₉₁Pa **C** ²³⁹₉₄Pu **D** ²³⁹₉₀Th
- **38** In what way do the atoms of the isotopes ${}^{12}_{6}$ C, ${}^{13}_{6}$ C and ${}^{14}_{6}$ C differ?
 - A different charge
 - B different numbers of electrons
 - C different numbers of neutrons
 - D different numbers of protons
- **40** A nickel nucleus ⁵⁹₂₈Ni can be transformed by a process termed K-capture. In this process the nucleus absorbs an orbital electron. 9702/01/O/N/03

If no other process is involved, what is the resulting nucleus?

A $\frac{58}{29}$ Ni **B** $\frac{59}{29}$ Co **C** $\frac{59}{29}$ Co **D** $\frac{59}{29}$ Cu

Nuclear Physics

9702/1/O/N/02

9702/01/M/J/03

39 Strontium- 90 $\binom{90}{38}$ Sr) is radioactive and emits β -particles.

Which equation could represent this nuclear decay?

- $\textbf{B} \quad {}^{90}_{38}\text{Sr} \rightarrow {}^{90}_{39}\text{Y} + {}^{0}_{-1}\beta$
- $\mathbf{C} \quad {}^{90}_{38}\text{Sr} \rightarrow {}^{90}_{37}\text{Rb} + {}^{0}_{1}\beta$
- $\mathbf{D} \quad {}^{90}_{38}\text{Sr} \rightarrow {}^{90}_{37}\text{Sr} + {}^{0}_{1}\beta$

40 Protons and neutrons are thought to consist of smaller particles called quarks. 9702/01/M/J/03

The 'up' quark has a charge of $\frac{2}{3}e$: a 'down' quark has a charge of $-\frac{1}{3}e$, where *e* is the elementary charge (+1.6 x 10⁻¹⁹C).

How many up quarks and down quarks must a proton contain?

	up quarks	down quarks
Α	0	3
в	1	1
С	1	2
D	2	1

38 Which are the correct descriptions of a γ -ray and a β -particle?

9702/01/O/N/03

	γ-ray	β-particle
Α	high-speed electron	electromagnetic radiation
В	electromagnetic radiation	Helium-4 nucleus
С	electromagnetic radiation	high-speed electron
D	high-speed electron	Helium-4 nucleus

39 A certain nuclide, Uranium-235, has nucleon number 235, proton number 92 and neutron number 143. Data on four other nuclides are given below. 9702/01/0/N/03

Which is an isotope of Uranium-235?

	nucleon number	proton number	neutron number
Α	235	91	144
В	236	92	144
С	237	94	143
D	238	95	143

38 A nucleus of the nuclide ${}^{241}_{94}$ Pu decays by emission of a β -particle followed by the emission of an α -particle.

Which of the nuclides shown is formed?

- **A** $^{239}_{93}$ Np **B** $^{239}_{91}$ Pa **C** $^{237}_{93}$ Np **D** $^{237}_{92}$ U
- **39** A thin gold foil is bombarded with α -particles as shown.

incident α-particles gold foil

The results of this experiment provide information about the

- A binding energy of a gold nucleus.
- **B** energy levels of electrons in gold atoms.
- **C** size of a gold nucleus.
- **D** structure of a gold nucleus.

40 Isotopes of a given element all have the same

- A charge/mass ratio.
- B neutron number.
- C nucleon number.
- D proton number.

38 What is a correct order of magnitude estimate for the diameter of a typical atomic nucleus?

Α	10 ¹⁴ m	в	10 ¹⁸ m	C 10 ²² m	D	10 ²⁶ m
		_		• • • • • • • • • • • • • • • • • • • •	_	

Nuclear Physics

9702/01/M/J/04

9702/01/M/J/04

9702/01/M/J/06

38 The symbol ${}^{77}_{32}$ Ge represents a nuclide of germanium that decays to a nuclide of arsenic (As) by emitting a β -particle.

What is the symbol of this arsenic nuclide?

A ${}^{76}_{32}$ As **B** ${}^{78}_{32}$ As **C** ${}^{78}_{31}$ As **D** ${}^{77}_{33}$ As

39 The table shows three properties of different types of ionising radiation.

9702/01/O/N/04

	X	Y	Z
charge	0	-1e	+2e
mass	0	<u>1</u> 1840 и	4 <i>u</i>
speed	С	~0.9 <i>c</i>	~0.1 <i>c</i>

What are the radiations X, Y and Z?

	X	Y	Z
Α	alpha	beta	X-rays
В	gamma	alpha	beta
С	gamma	beta	alpha
D	X-rays	alpha	beta

- 40 Which conclusion can be drawn from the results of the experiment showing the scattering of α -particles by gold foil? 9702/01/O/N/04
 - A Electrons orbit the atomic nucleus in well-defined paths.
 - B Nuclei of different isotopes contain different numbers of neutrons.
 - **C** The atomic nucleus contains protons and neutrons.
 - **D** The nucleus is very small compared with the size of the atom.

38 Which two nuclei contain the same number of neutrons?

- **A** ${}^{12}_{6}$ C and ${}^{14}_{6}$ C
- ${\bf B} = {16 \atop 7} {\sf N} \mbox{ and } {15 \atop 8} {\sf O}$
- $\boldsymbol{C} = \begin{smallmatrix} 23\\ 11 \end{smallmatrix} Na$ and $\begin{smallmatrix} 24\\ 12 \end{smallmatrix} Mg$
- **D** $^{32}_{14}$ Si and $^{32}_{15}$ P

Nuclear Physics

9702/01/M/J/05

39 A student conducts an experiment using an α -particle source.

When considering safety precautions, what can be assumed to be the maximum range of α -particles in air?

- A between 0 and 5 mm
- B between 5 mm and 200 mm
- C between 200 mm and 500 mm
- D between 500 mm and 1000 mm
- 40 The following represents a sequence of radioactive decays involving two α -particles and one β -particle. 9702/01/M/J/05

²¹⁷₈₅At
$$\xrightarrow{\alpha} V \xrightarrow{\alpha} W \xrightarrow{\beta} X$$

What is the nuclide X?

- **A** $^{213}_{85}$ At **B** $^{215}_{77}$ Ir **C** $^{209}_{82}$ Pb **D** $^{217}_{81}$ TI
- **38** An atomic nucleus emits a β -particle.

What change does this cause to the proton and nucleon numbers of the nucleus?

	proton number	nucleon number
Α	-1	+1
в	0	-1
С	+1	-1
D	+1	0

40 A nuclear reaction is represented by the equation

$${}^{16}_{8}\text{O} + {}^{4}_{2}\text{He} \rightarrow {}^{19}_{9}\text{F} + \text{X}.$$

What is particle X?

- **A** an α -particle
- **B** a β -particle
- c a neutron
- D a proton

9702/01/M/J/05

9702/01/O/N/05

9702/01/O/N/05

39 Two α -particles with equal energies are fired towards the nucleus of a gold atom. 9702/01/O/N/05

7

Which diagram best represents their paths?

39 The decay of a nucleus of neptunium is accompanied by the emission of a β-particle and γ-radiation. 9702/01/M/J/06

What effect (if any) does this decay have on the proton number and the nucleon number of the nucleus?

	proton number	nucleon number
Α	increases	decreases
В	decreases	increases
С	unchanged	decreases
D	increases	unchanged

39 The symbol $^{77}_{32}$ Ge represents a nucleus of germanium that decays to a nucleus of arsenic by emitting a β -particle. $^{9702/01/M/J/07}$

What is the symbol of this arsenic nucleus?

A ${}^{76}_{32}$ As **B** ${}^{78}_{32}$ As **C** ${}^{78}_{31}$ As **D** ${}^{77}_{33}$ As

40 Radon-220 is radioactive and decays to Polonium-216 with the emission of an α-particle. The equation for the radioactive decay is shown. 9702/01/M/J/06

$$^{220}_{86}$$
Rn $\rightarrow ^{216}_{84}$ Po + $^{4}_{2}$ He

How many neutrons are in the radon and polonium nuclei?

	Rn	Po
Α	86	84
В	134	132
С	220	212
D	220	216

38 Which statement concerning α -particles is correct?

- **A** An α -particle has charge +4*e*.
- **B** An α -particle is a helium atom.
- **C** When α -particles travel through air, they cause ionisation.
- **D** When α -particles travel through a sheet of gold foil, they make the gold radioactive.
- **39** Where are electrons, neutrons and protons found in an atom?

	electrons	neutrons	protons
Α	in the nucleus	in the nucleus	orbiting the nucleus
в	in the nucleus	orbiting the nucleus	in the nucleus
С	orbiting the nucleus	in the nucleus	orbiting the nucleus
D	orbiting the nucleus	in the nucleus	in the nucleus

40 Radon ${}^{222}_{86}$ Rn decays by α and β emission to bismuth ${}^{214}_{83}$ Bi.

For the decay of each nucleus of radon, how many α and β particles are emitted?

	α particles	β particles	
Α	1	1	
В	2	1	
С	1	2	
D	2	2	

8

. .

9702/01/O/N/06

9702/01/O/N/06

Nuclear Physics

9702/01/O/N/06

- 38 A detector is exposed to a radioactive source. Fluctuations in the count-rate are observed. 9702/01/M/J/07 What do these fluctuations indicate about radioactive decay?
 - A It is random.
 - B It is spontaneous.
 - **C** It is exponential.
 - D It is non-linear.
- **40** Each of the nuclei below is accelerated from rest through the same potential difference. 9702/01/M/J/07

Which one completes the acceleration with the lowest speed?

A ${}_{1}^{1}$ **H B** ${}_{2}^{4}$ **He C** ${}_{3}^{7}$ Li **D** ${}_{4}^{9}$ Be

36 How is it possible to distinguish between the isotopes of uranium?

9702/01/O/N/07

9702/01/O/N/07

- A Their nuclei have different charge and different mass, and they emit different particles when they decay.
- B Their nuclei have different charge but the same mass.
- **C** Their nuclei have the same charge but different mass.
- **D** Their nuclei have the same charge and mass, but they emit different particles when they decay.
- 37 What is not conserved in nuclear processes?
 - A energy and mass together
 - B nucleon number
 - c neutron number
 - D charge
- **40** The following particles are each accelerated from rest through the same potential difference.

9702/01/O/N/07

Which one completes the acceleration with the greatest momentum?

- **A** α-particle
- B electron
- **C** neutron
- D proton

38 A thin gold foil is bombarded with α -particles as shown.

9702/01/O/N/07

10

What can be deduced from this experiment?

- A the binding energy of a gold nucleus
- **B** the energy levels of electrons in gold atoms
- C the small size of a gold nucleus
- D the structure of a gold nucleus
- 40 A radioactive nucleus is formed by β -decay. This nucleus then decays by α -emission. 9702/01/M/J/08

Which graph of proton number Z plotted against nucleon number N shows the β -decay followed by the α -emission?

A 10¹⁵kg

39 What is the approximate mass of a nucleus of uranium?

B 10²⁰kg **C** 10^{25} kg

39 A zirconium nucleus, $^{100}_{40}$ Zr , is a β -emitter. The product nucleus is also a β -emitter. 9702/01/O/N/07

What is the final resulting nucleus of these two decays?

- ¹⁰⁰₃₈Sr **C** ${}^{98}_{40}$ Zr **D** $^{102}_{40}$ Zr ¹⁰⁰₄₂Mo В Α
- 38 Which conclusion can be drawn from the results of the experiment showing the scattering of α -particles by gold foil? 9702/01/O/N/08
 - Electrons orbit the atomic nucleus in well-defined paths. Α
 - В Nuclei of different isotopes contain different numbers of neutrons.
 - С The atomic nucleus contains protons and neutrons.
 - D The nucleus is very small compared with the size of the atom.
- **39** A nucleus Q has the notation ${}^{y}_{x}Q$.

Which of the following is an isotope of Q?

 $\mathbf{B}_{x} \mathbf{A}^{y} \mathbf{Q}$ $\mathbf{C} \mathbf{A}^{y} \mathbf{Q}$ $A \stackrel{y}{}^{1}_{x}Q$ $\mathbf{D} = \begin{array}{c} y & 1 \\ x+1 \end{array} \mathbf{Q}$

40 A $^{238}_{92}$ U nucleus decays in two stages to a $^{234}_{91}$ Pa nucleus. 9702/01/O/N/08

What was emitted in these two stages?

A $\alpha + \beta$ **B** $\alpha + \gamma$ **C** β + β D $\beta + \gamma$

36 How do the nucleon (mass) number and proton (atomic) number of two isotopes of an element compare? 9702/01/M/J/09

	nucleon number	proton number	
Α	different	different	
В	different	same	
С	c same different		
D	same	same	

9702/01/O/N/08

10 ³⁰ kg

D

37 Nuclear decay is both spontaneous and random.

When the count rate of a radioactive isotope is measured, the readings fluctuate.

Which row describes what the fluctuations demonstrate?

	spontaneous nature	random nature
Α	no	no
В	no	yes
С	yes	no
D	yes	yes

- 38 Which two nuclei contain the same number of neutrons?
 - **A** ${}^{12}_{6}$ C and ${}^{14}_{6}$ C
 - **B** $^{16}_{7}$ N and $^{15}_{8}$ O
 - **C** $^{23}_{11}$ Na and $^{24}_{12}$ Mg
 - **D** $^{32}_{14}$ Si and $^{32}_{15}$ P
- **39** The calcium nuclide ${}^{42}_{20}$ Ca is formed by beta decay.

What are the nucleon (mass) number and proton (atomic) number of the unstable nuclide that underwent beta decay to form the calcium nuclide?

	nucleon number	proton number	
A 41		19	
B 41		21	
С	42	19	
D	42	21	

40 When boron-11 $\binom{11}{5}B$ is bombarded with α -particles, a new nucleus is formed and a neutron is released.

Which nuclear equation could represent this reaction?

- **A** ${}^{11}_{5}B + {}^{1}_{1}He \rightarrow {}^{11}_{6}C + {}^{1}_{0}n$
- $\mathbf{B} \quad {}^{11}_{5}\mathrm{B} \, + \, {}^{2}_{2}\mathrm{He} \, \rightarrow \, {}^{12}_{7}\mathrm{N} \, + \, {}^{1}_{0}\mathrm{n}$
- $\mathbf{C} \quad {}^{11}_{5}\mathrm{B} \, + \, {}^{4}_{2}\mathrm{He} \, \rightarrow \, {}^{14}_{6}\mathrm{C} \, + \, {}^{1}_{1}\mathrm{n}$
- \mathbf{D} ${}^{11}_{5}\mathbf{B}$ + ${}^{4}_{2}\mathbf{He} \rightarrow {}^{14}_{7}\mathbf{N}$ + ${}^{1}_{0}\mathbf{n}$

Nuclear Physics

9702/01/M/J/09

9702/01/M/J/09

37 The gold nucleus $^{185}_{79}$ Au undergoes alpha decay.

9702/11/O/N/09

What are the nucleon (mass) number and proton (atomic) number of the nucleus formed by this decay?

	nucleon number	proton number	
Α	183	79	
B 183		77	
С	181	77	
D	181	75	

- 38 The nuclei of the isotopes of an element all contain the same number of a certain particle. 9702/11/O/N/09 What is this particle?
 - A electron
 - B neutron
 - C nucleon
 - D proton
- 40 Two α-particles with equal energies are fired towards the nucleus of a gold atom.9702/11/O/N/09Which diagram best represents their paths?

- 39 Alpha, beta and gamma radiations
 - 1 are absorbed to different extents in solids,
 - 2 behave differently in an electric field,
 - 3 behave differently in a magnetic field.

The diagrams illustrate these behaviours.

A L, P, X **B** L, P, Z **C** M, P, Z **D** N, Q, X

36 The gold nucleus $^{185}_{79}$ Au undergoes alpha decay.

9702/12/O/N/09

What are the nucleon (mass) number and proton (atomic) number of the nucleus formed by this decay?

	nucleon number	proton number	
A 183		79	
B 183		77	
C 181		77	
D	181	75	

- 37 The nuclei of the isotopes of an element all contain the same number of a certain particle.
 9702/12/O/N/09
 What is this particle?
 - A electron
 - **B** neutron
 - **C** nucleon
 - **D** proton
- 38 Alpha, beta and gamma radiations
 - 1 are absorbed to different extents in solids,
 - 2 behave differently in an electric field,
 - 3 behave differently in a magnetic field.

The diagrams illustrate these behaviours.

diagram 2 diagram 1 + L Ρ Q Μ R Ν -| |paper 1mm 1 cm aluminium lead diagram 3 Х Y Ζ magnetic field into page Which three labels on these diagrams refer to the same kind of radiation?

A L, P, X **B** L, P, Z **C** M, P, Z **D** N, Q, X

9702/12/O/N/09

39 Two α -particles with equal energies are fired towards the nucleus of a gold atom. 9702/12/O/N/09

Which diagram best represents their paths?

37 What are the correct descriptions of a γ -ray and a β -particle?

9702/11/M/J/10

	γ -ray	β-particle	
Α	high-speed electron	electromagnetic radiation	
В	electromagnetic radiation	helium-4 nucleus	
С	c electromagnetic radiation high-speed electron		
D	high-speed electron	helium-4 nucleus	

- **39** What is **not** conserved in nuclear processes?
 - A charge
 - B momentum
 - **C** the total number of neutrons
 - D the total number of nucleons

9702/11/M/J/10

38 The grid shows a number of nuclides arranged according to the number of protons and the number of neutrons in each.
9702/11/M/J/10

A nucleus of the nuclide ${}_{3}^{8}$ Li decays by emitting a β -particle.

What is the resulting nuclide?

40 The following represents a sequence of radioactive decays involving two α -particles and one β -particle. 9702/11/M/J/10

$${}^{217}_{85}\text{At} \xrightarrow{\alpha} V \xrightarrow{\alpha} W \xrightarrow{\beta} X$$

D ²¹⁷₈₁T*l*

What is the nuclide X?

A $^{213}_{85}$ At **B** $^{215}_{77}$ Ir **C** $^{209}_{82}$ Pb

37 The grid shows a number of nuclides arranged according to the number of protons and the number of neutrons in each. 9702/12/M/J/10

A nucleus of the nuclide 8_3 Li decays by emitting a β -particle.

What is the resulting nuclide?

PhysicsAndMathsTutor.com

38 The following represents a sequence of radioactive decays involving two α -particles and one β -particle. 9702/12/M/J/10

$$^{217}_{85}\text{At} \xrightarrow{\alpha} V \xrightarrow{\alpha} W \xrightarrow{\beta} X$$

What is the nuclide X?

A $^{213}_{85}$ At **B** $^{215}_{77}$ Ir **C** $^{209}_{82}$ Pb **D** $^{217}_{81}$ Tl

39 What are the correct descriptions of a γ -ray and a β -particle?

	γ-ray	β -particle	
Α	high-speed electron	electromagnetic radiation	
В	electromagnetic radiation	helium-4 nucleus	
С	electromagnetic radiation high-speed electron		
D	D high-speed electron helium-4 nucleu		

- 40 What is not conserved in nuclear processes?
 - A charge
 - B momentum
 - **C** the total number of neutrons
 - D the total number of nucleons
- **40** The grid shows a number of nuclides arranged according to the number of protons and the number of neutrons in each. 9702/13/M/J/10

A nucleus of the nuclide ${}_{3}^{8}$ Li decays by emitting a β -particle.

What is the resulting nuclide?

Nuclear Physics

9702/12/M/J/10

9702/12/M/J/10

PhysicsAndMathsTutor.com

39 The following represents a sequence of radioactive decays involving two α -particles and one β -particle. 9702/13/M/J/10

²¹⁷₈₅At $\xrightarrow{\alpha}$ V $\xrightarrow{\alpha}$ W $\xrightarrow{\beta}$ X

What is the nuclide X?

- **A** $^{213}_{85}$ At **B** $^{215}_{77}$ Ir **C** $^{209}_{82}$ Pb **D** $^{217}_{81}$ Tl
- 37 What is not conserved in nuclear processes?
 - A charge
 - B momentum
 - C the total number of neutrons
 - **D** the total number of nucleons
- **38** What are the correct descriptions of a γ -ray and a β -particle?

	γ-ray	β-particle
Α	high-speed electron	electromagnetic radiation
В	electromagnetic radiation	helium-4 nucleus
С	electromagnetic radiation	high-speed electron
D	high-speed electron	helium-4 nucleus

39 When a magnesium nucleus ${}^{25}_{12}$ Mg is hit by a gamma ray, a sodium nucleus ${}^{24}_{11}$ Na is formed and another particle is emitted.

What are the nucleon number (mass number) and proton number (atomic number) of the other particle produced in this nuclear reaction? 9702/11/O/N/10

	nucleon number	proton number
Α	0	-1
в	0	1
С	1	-1
D	1	1

40 Uranium-238, $^{238}_{92}$ U, decays by α-emission into a daughter product which in turn decays by β-emission into a grand-daughter product. $^{9702/13/M/J/11}$

What is the grand-daughter product?

A $^{234}_{90}$ Th **B** $^{234}_{91}$ Pa **C** $^{234}_{92}$ U **D** $^{230}_{90}$ Th

Nuclear Physics

9702/13/M/J/10

9702/13/M/J/10

38 Uranium-235 may be represented by the symbol $^{235}_{92}$ U.

9702/11/O/N/10

Which row shows the numbers of nucleons, protons and neutrons in a $^{235}_{92}$ U nucleus?

	nucleons	protons	neutrons
Α	92	235	143
В	143	92	235
С	235	92	143
D	235	143	92

40 Which nuclear equation shows the beta decay of a nucleus of argon (Ar) into potassium (K)?

9702/11/O/N/10

- **A** $^{44}_{21}$ Ar $\rightarrow ^{40}_{19}$ K + $^{4}_{2}$ He
- **B** ${}^{40}_{20}\text{Ar} \rightarrow {}^{40}_{19}\text{K} + {}^{0}_{1}\text{e}$
- **C** ${}^{40}_{18}\text{Ar} \rightarrow {}^{40}_{19}\text{K} + {}^{0}_{1}\text{e}$
- **D** $^{40}_{19}$ Ar $\rightarrow ^{40}_{19}$ K + $^{0}_{0}\gamma$
- **40** A counter recording radioactive decays from a radioactive source gives the following counts in equal intervals of time. 9702/12/O/N/10

time/min	counts
0–10	424
10–20	395
20–30	413
30–40	363
40–50	366
50–60	294
60–70	301
70–80	253
80–90	212

What can be deduced from these readings?

- A that radioactivity is random and that the half-life is 90 minutes
- B that radioactivity is random and that the half-life is uncertain
- **C** that radioactivity is spontaneous and that the half-life is 90 minutes
- D that radioactivity is spontaneous and that the half-life is uncertain

38 In the Rutherford scattering experiment, α-particles were fired at a thin gold foil. A small proportion of the α-particles were deflected through large angles. 9702/12/O/N/10

Which statement gives the correct conclusion that could be drawn directly from these results?

- **A** The atom is made up of electrons, protons and neutrons.
- **B** The nucleus is at the centre of the atom.
- **C** The nucleus is made up of protons and neutrons.
- D The atom contains a very small, charged nucleus.
- **39** Which statement about the nuclei of the atoms of an element is correct? 9702/12/O/N/10
 - A Every nucleus of an element contains an equal number of neutrons and protons.
 - **B** Every nucleus of an element contains the same number of neutrons as all others of that element, but the number of protons may differ.
 - **C** Every nucleus of an element contains the same number of protons as all others of that element, but the number of neutrons may differ.
 - **D** The number of protons in a nucleus differs from isotope to isotope of an element, as do the number of neutrons.
- **40** When a magnesium nucleus ²⁵₁₂Mg is hit by a gamma ray, a sodium nucleus ²⁴₁₁Na is formed and another particle is emitted. ^{9702/13/O/N/10}

What are the nucleon number (mass number) and proton number (atomic number) of the other particle produced in this nuclear reaction?

	nucleon number	proton number
Α	0	-1
в	0	1
С	1	-1
D	1	1

38 The first artificial radioactive substance was made by bombarding aluminium, ${}^{27}_{13}$ Al, with α -particles. This produced an unstable isotope of phosphorus, ${}^{30}_{15}$ P. ${}^{9702/11/M/J/11}$

What was the by-product of this reaction?

- **A** an α -particle
- **B** a β -particle
- **C** a γ-ray
- D a neutron

- **38** Which nuclear equation shows the beta decay of a nucleus of argon (Ar) into potassium (K)?
 - $\begin{array}{lll} \textbf{A} & {}^{44}_{21} \text{Ar} \rightarrow {}^{40}_{19} \text{K} + {}^{4}_{2} \text{He} \\ \\ \textbf{B} & {}^{40}_{20} \text{Ar} \rightarrow {}^{40}_{19} \text{K} + {}^{0}_{1} \text{e} \\ \\ \textbf{C} & {}^{40}_{18} \text{Ar} \rightarrow {}^{40}_{19} \text{K} + {}^{0}_{1} \text{e} \\ \\ \textbf{D} & {}^{40}_{19} \text{Ar} \rightarrow {}^{40}_{19} \text{K} + {}^{0}_{0} \gamma \end{array}$
- **39** Uranium-235 may be represented by the symbol $^{235}_{92}$ U.

Which row shows the numbers of nucleons, protons and neutrons in a $^{235}_{\ 92}\text{U}$ nucleus?

	nucleons	protons	neutrons
Α	92	235	143
В	143	92	235
С	235	92	143
D	235	143	92

39 The uranium nucleus ${}^{238}_{92}$ U undergoes α -decay, producing nucleus X.

eus X. 9702/12/M/J/11

Nucleus X undergoes β -decay, producing nucleus Y.

For nucleus Y, what are the values of the proton number and nucleon number?

	proton number	nucleon number
Α	89	234
В	89	236
С	91	234
D	91	236

40 Radon-220 is radioactive and decays to polonium-216 with the emission of an α-particle. The equation for the radioactive decay is shown. 9702/12/M/J/11

$$^{220}_{86}\text{Rn}$$
 \rightarrow $^{216}_{84}\text{Po}$ + $^{4}_{2}\text{He}$

How many neutrons are in the radon and polonium nuclei?

	Rn	Ро
Α	86	84
В	134	132
С	220	212
D	220	216

22

9702/13/O/N/10

9702/13/O/N/10

39 Uranium-238, $^{238}_{92}$ U, decays by α -emission into a daughter product which in turn decays by β -emission into a grand-daughter product. $^{9702/11/M/J/11}$

What is the grand-daughter product?

- **A** ²³⁴₉₀Th **B** ²³⁴₉₁Pa **C** ²³⁴₉₂U **D** ²³⁰₉₀Th
- 40 Which statement about nuclei is correct?
 - A Different isotopic nuclei have different proton numbers.
 - **B** For some nuclei, the nucleon number can be less than the proton number.
 - **C** In some nuclear processes, mass-energy is not conserved.
 - **D** Nucleon numbers of nuclei are unchanged by the emission of β -particles.
- **38** Which statement about nuclei is correct?
 - A Different isotopic nuclei have different proton numbers.
 - **B** For some nuclei, the nucleon number can be less than the proton number.
 - **C** In some nuclear processes, mass-energy is not conserved.
 - **D** Nucleon numbers of nuclei are unchanged by the emission of β -particles.
- **39** The first artificial radioactive substance was made by bombarding aluminium, ${}^{27}_{13}$ Al, with α -particles. This produced an unstable isotope of phosphorus, ${}^{30}_{15}$ P. 9702/13/M/J/11

What was the by-product of this reaction?

- **A** an α-particle
- **B** a β -particle
- **C** a γ-ray
- D a neutron
- **39** An experiment in which α -particles were deflected by a gold foil produced new insights into the structure of the atom. 9702/11/M/J/12

Which conclusion can be drawn from the results of the experiment?

- A Atomic nuclei occupy a very small fraction of the volume of an atom.
- **B** Electrons orbit the atomic nucleus.
- **C** Some atoms of the same element contain different numbers of neutrons.
- **D** The atomic nucleus contains protons and neutrons.

9702/11/M/J/11

9702/13/M/J/11

PhysicsAndMathsTutor.com

38 The circuit below has a current *I* in the resistor R.

What must be known in order to determine the value of *I*?

- A e.m.f. of the power supply
- B resistance of resistor S
- C Kirchhoff's first law
- D Kirchhoff's second law
- **39** Which statement concerning α -particles is correct?
 - **A** An α -particle has charge +4e.
 - **B** An α -particle is a helium atom.
 - **C** When α -particles travel through air, they cause ionisation.
 - **D** When α -particles travel through a sheet of gold foil, they make the gold radioactive.
- **40** A nucleus of the nuclide $^{241}_{94}$ Pu decays by emission of a β -particle followed by the emission of an α -particle. 9702/12/O/N/11

Which nucleus is formed?

- **A** $^{239}_{93}$ Np **B** $^{239}_{91}$ Pa **C** $^{237}_{93}$ Np **D** $^{237}_{92}$ U
- **40** Radon $^{222}_{86}$ Rn is the start of a decay chain that forms bismuth $^{214}_{83}$ Bi by alpha and beta emission. 9702/12/M/J/12

For the decay of each nucleus of radon, how many α particles and β particles are emitted?

	α particles	β particles
Α	1	1
В	2	1
С	1	2
D	2	2

Nuclear Physics

9702/12/O/N/11

39 Nuclear decay is both spontaneous and random in nature.

Which row gives the correct experimental evidence for these properties?

	spontaneous nature of decay	random nature of decay
Α	the decay rate is not affected by pressure	the decay rate is not affected by temperature
В	the decay rate is not affected by pressure	the rate at which radiation is received at a counter fluctuates
С	the decay rate is not affected by temperature	the decay rate is not affected by pressure
D	the rate at which radiation is received at a counter fluctuates	the decay rate is not affected by pressure

40 Thorium-234 $\binom{^{234}}{_{90}}$ Th) decays by β-emission into a daughter product which in turn decays by further β-emission into a granddaughter product. $\frac{^{9702/11/M/J/12}}{^{9702/11/M/J/12}}$

Which letter in the diagram represents the granddaughter product?

40 An experiment in which α-particles were deflected by a gold foil produced new insights into the structure of the atom.
9702/13/M/J/12

Which conclusion can be drawn from the results of the experiment?

- A Atomic nuclei occupy a very small fraction of the volume of an atom.
- **B** Electrons orbit the atomic nucleus.
- **C** Some atoms of the same element contain different numbers of neutrons.
- **D** The atomic nucleus contains protons and neutrons.

39 Thorium-234 $\binom{234}{90}$ Th) decays by β -emission into a daughter product which in turn decays by further β -emission into a granddaughter product. 9702/13/M/J/12

> proton number 90 89 89 88 232 233 234 235 236 nucleon number

Which letter in the diagram represents the granddaughter product?

39 A material contains a radioactive isotope that disintegrates solely by the emission of α-particles at a rate of 100 s⁻¹.

Which statement about this material is correct?

- A The number of atoms in the material diminishes at a rate of 100 s¹.
- **B** The number of neutrons in the material diminishes at a rate of 100 s¹.
- **C** The number of nucleons in the material diminishes at a rate of 400 s¹.
- **D** The number of protons in the material diminishes at a rate of 100 s¹.
- 40 In a radioactive decay series, three successive decays each result in a particle being emitted.

The first decay results in the emission of a β -particle. The second decay results in the emission of an α -particle. The third decay results in the emission of another β -particle. 9702/11/O/N/12

Nuclides P and S are compared.

Which statement is correct?

- A P and S are identical in all respects.
- **B** P and S are isotopes of the same element.
- **C** S is a different element of lower atomic number.
- **D** S is a different element of reduced mass.

38 A class of students used dice to simulate radioactive decay. After each throw, those dice showing a '6' were removed. The graph shows the results.

What could the scatter of points about the best-fit curve represent for actual radioactive decay?

- A background count not being taken into account
- **B** more than one type of radiation being present
- C the random nature of radioactive decay
- D the spontaneous nature of radioactive decay
- **39** Which statement about alpha, beta and gamma radiation is correct?
 - A Alpha radiation has the greatest ionising power.
 - **B** Beta radiation has the greatest ionising power.
 - $\label{eq:constraint} \textbf{C} \quad \mbox{Gamma radiation has the greatest ionising power}.$
 - **D** Alpha, beta and gamma radiation have nearly equal ionising powers.
- **40** A different nucleus can be formed by bombarding a stable nucleus with an energetic α -particle.

9702/12/O/N/12

9702/11/O/N/12

 $^{23}_{11}$ Na is bombarded with an energetic α -particle.

What could be the products of this nuclear reaction?

- A $^{25}_{10}$ Ne + neutron
- **B** $^{25}_{11}$ Na + proton
- **C** $^{26}_{12}$ Mg + β
- **D** $^{27}_{13}$ A *l* + γ

38 A nuclear isotope emits radiation which is detected by a Geiger-Müller tube held at a distance of about 10 cm from the radioactive source. The radiation is stopped completely by a 2mm thick sheet of lead.
9702/13/O/N/12

What can be deduced from this information about the emission from the isotope?

- A It could be alpha and beta radiation, but not gamma radiation.
- **B** It could be alpha and gamma radiation, but not beta radiation.
- **C** It could be beta and gamma radiation, but not alpha radiation.
- **D** It could be alpha, beta and gamma radiation.
- **39** What remains constant during β -emission from a number of identical nuclei in a substance?

9702/13/O/N/12

- **A** energy of the β -particles
- B neutron number of the nuclei
- **C** nucleon number of the nuclei
- **D** proton number of the nuclei
- **40** The graph of neutron number against proton number represents a sequence of radioactive decays. 9702/13/O/N/12

Nucleus X is at the start of the sequence and, after the decays have occurred, nucleus Y is formed. $$_{9702/12/O/N/12}$$

What is emitted during the sequence of decays?

- **A** one α -particle followed by one β -particle
- **B** one α -particle followed by two β -particles
- **C** two α -particles followed by two β -particles
- **D** two β -particles followed by one α -particle

28

38 A nickel nucleus ${}^{59}_{28}$ Ni can be transformed by a process termed K-capture. In this process the nucleus absorbs an orbital electron. ${}^{9702/11/M/J/13}$

If no other process is involved, what is the resulting nucleus?

- **A** ${}^{58}_{28}$ Ni **B** ${}^{58}_{27}$ Co **C** ${}^{59}_{27}$ Co **D** ${}^{59}_{29}$ Cu
- **39** It was once thought that the mass of an atom is spread uniformly through the volume of the atom. When α -particles are directed at a piece of gold foil, the results led scientists to believe instead that nearly all the mass of the gold atom is concentrated at a point inside the atom. 9702/11/M/J/13

Which effect is possible only if nearly all the mass of the gold atom is concentrated at a point?

- **A** a few α -particles bounce back
- **B** most α-particles are only slightly deflected
- **C** some α -particles pass through without any deflection
- **D** some α -particles are absorbed
- 40 Which pair of nuclei are isotopes of one another?

	nucleon number	number of neutrons
Α	186 180	112 118
В	186 182	112 108
С	184 187	110 110
D	186 186	110 112

40 An actinium nucleus has a nucleon number of 227 and a proton number of 89. It decays to form a radium nucleus, emitting a beta particle and an alpha particle in the process. 9702/12/M/J/13

What are the nucleon number and the proton number of this radium nucleus?

	nucleon number	proton number
Α	223	87
в	223	88
С	224	87
D	225	86

Nuclear Physics

9702/11/M/J/13

- 39 What is the approximate mass of an alpha particle?
 - A 10²⁸kg
 - **B** 10²⁶kg
 - **C** 10²⁴ kg
 - **D** 10²² kg
- **40** A radioactive nucleus is formed by β -decay. This nucleus then decays by α -emission. 9702/13/M/J/13

Which graph of nucleon number *N* plotted against proton number *Z* shows the β -decay followed by the α -emission?

39 The decay of a nucleus of neptunium is accompanied by the emission of a β-particle and γ-radiation. 9702/13/M/J/13

What effect (if any) does this decay have on the proton number and on the nucleon number of the nucleus?

	proton number	nucleon number
Α	increases	decreases
в	decreases	increases
С	unchanged	decreases
D	increases	unchanged

9702/12/M/J/13

30

38 Scientists investigating the count rate from a radioactive source observed that the count rate fluctuates. 9702/13/M/J/13

What do these fluctuations imply about the nature of radioactive decay?

- A It involves atomic nuclei.
- **B** It is predictable.
- **C** It is random.
- **D** It is spontaneous.
- 39 When α-particles are fired at a thin metal foil, most of the particles pass straight through but a few are deflected by a large angle.
 9702/11/O/N/13

Which change would increase the **proportion** of α-particles deflected by a large angle?

- **A** using α -particles with greater kinetic energy
- B using a foil made of a metal with fewer protons in its nuclei
- **C** using a double thickness foil
- D using an alpha source with a higher activity
- **40** Plutonium-239 ($^{239}_{94}$ Pu) decays by emitting α -radiation.

Which nuclide is formed from one of these decay reactions? (The product nuclides are represented by X.)

- **A** $^{235}_{92}X$ **B** $^{237}_{92}X$ **C** $^{239}_{93}X$ **D** $^{239}_{95}X$
- **39** A nucleus of the nuclide ²²⁸/₈₉Ac decays by emitting a beta particle. The nuclear equation below represents this decay. 9702/13/O/N/13

$$^{228}_{89}Ac \rightarrow ^{X}_{Y}Th + \beta$$

Which pair of values of X and Y is correct?

	Х	Y
Α	224	87
в	224	89
С	228	88
D	228	90

Nuclear Physics

9702/11/O/N/13

40 Two α -particles with equal energies are deflected by a large nucleus.

Which diagram best represents their paths?

38 A nucleus X decays into a nucleus Y by emitting an alpha particle followed by two beta particles.

Which statement about this nuclear decay is correct?

- A Beta particle decay occurs when a proton changes into a neutron.
- **B** Nucleus Y has the same nucleon number as nucleus X.
- C Nucleus Y is an isotope of nucleus X.
- **D** The total mass of the products is equal to the mass of the initial nucleus X.
- A slow-moving neutron collides with a nucleus of uranium-235. This results in a nuclear reaction that is represented by the following nuclear equation

 $^{235}_{92}U$ + 1_0n \rightarrow $^{154}_{60}Nd$ + $^{80}_{32}Ge$ + x

where x represents one or more particles.

What does x represent?

- A one neutron
- B two electrons
- C two neutrons
- **D** two protons
- **40** The first artificial radioactive substance was made by bombarding aluminium, ${}^{27}_{13}Al$, with α -particles. This produced an unstable isotope of phosphorus, ${}^{30}_{15}P$. 9702/12/M/J/14

What was the by-product of this reaction?

- **A** an α-particle
- **B** a β -particle
- c a neutron
- D a proton

9702/13/O/N/13

9702/12/M/J/14

39 An isotope of thorium has a nucleon number of 232 and a proton number of 90. It decays to form another isotope of thorium with a nucleon number of 228. 9702/12/M/J/14

How many alpha particles and beta particles are emitted by a nucleus of thorium during this decay?

	alpha particles	beta particles
Α	0	4
В	1	0
С	1	2
D	2	1

40 Four nuclei are represented below.

9702/12/M/J/14

 $^{28}_{14}E$ $^{25}_{15}G$ $^{25}_{12}M$ $^{24}_{13}Q$

Which statement about these nuclei is correct?

- A An uncharged atom of element Q has 24 orbital electrons.
- **B** Nucleus M could transform into Q by emitting a beta particle.
- C Nuclei G and M are isotopes of the same element.
- **D** When E absorbs a neutron and then emits an alpha particle, nucleus E transforms into M.
- **40** The grid shows a number of nuclides arranged according to the number of protons and the number of neutrons in each. 9702/11/M/J/14

A nucleus of the nuclide ${}_{3}^{8}$ Li decays by emitting a β -particle.

What is the resulting nuclide?

38 In 2002, two-proton radioactive decay of an isotope of iron, ⁴⁵₂₆Fe, was observed. _{9702/11/M/J/14}

What could be the resulting product?

- **A** ${}^{43}_{26}$ **Fe B** ${}^{43}_{24}$ **Cr C** ${}^{45}_{24}$ **Cr D** ${}^{47}_{28}$ Ni
- **39** U⁺⁺ is a doubly-ionised uranium atom. The uranium atom has a nucleon number of 235 and a proton number of 92. 9702/11/M/J/14

In a simple model of the atom, how many particles are in this ionised atom?

A 235 B 325 C 327 D 329

37 Alpha, beta and gamma radiations have various depths of penetration in matter and different charges.

Which row best summarises the penetration and charge of each radiation?

	alpha	beta	gamma
Α	absorbed by a sheet of card negative charge	absorbed by several mm of aluminium no charge	not fully absorbed by several cm of lead no charge
В	absorbed by a sheet of card negative charge	absorbed by several mm of aluminium positive charge	not fully absorbed by several cm of lead no charge
С	absorbed by a sheet of card positive charge	absorbed by several mm of aluminium negative charge	not fully absorbed by several cm of lead no charge
D	absorbed by several mm of aluminium	not fully absorbed by several cm of lead	absorbed by a sheet of card
	positive charge	negative charge	no charge

38 Which statement about α -particles is correct?

9702/11/O/N/14

- A α-particles emitted from a single radioactive isotope have a continuous distribution of energies.
- **B** α -particles have less ionising power than β -particles.
- **C** The charge of an α -particle is +1.60 × 10 ¹⁹C.
- **D** The speeds of α -particles can be as high as 1.5×10^7 ms⁻¹.

34

39 The isotope ${}^{222}_{86}$ Rn decays in a sequence of emissions to form the isotope ${}^{206}_{82}$ Pb. At each stage of the decay sequence, it emits either an α -particle or a β -particle. 9702/11/O/N/14

What is the number of stages in the decay sequence?

A 4 **B** 8 **C** 16 **D** 20

40 What is the approximate mass of a nucleus of uranium?

- **A** 10 ¹⁵ kg **B** 10 ²⁰ kg **C** 10 ²⁵ kg **D** 10 ³⁰ kg
- **38** The nucleus of a radioactive isotope of an element emits an alpha particle. The daughter nucleus then emits a beta particle and then the daughter nucleus of that reaction emits another beta particle. 9702/13/O/N/14

Which statement describes the final nuclide that is formed?

- A It is a different isotope of the original element.
- **B** It is a nuclide of a different element of higher proton number.
- **C** It is a nuclide of the same element but with different proton number.
- **D** It is identical to the original nuclide.
- 39 A nuclear reaction is shown.

 $^{238}_{92}$ U + 4_2 He $\rightarrow ^{241}_{94}$ Pu + X

What is product X?

- A an alpha particle
- B an electron
- **c** a neutron
- **D** a proton
- **40** The nuclide $^{222}_{86}$ Rn decays in a sequence of stages to form the nuclide $^{206}_{82}$ Pb. 9702/11/M/J/15

Four of the nuclides formed in the sequence are α -particle emitters. The others are β -particle emitters.

How many nuclides formed in the decay sequence are $\beta\mbox{-particle emitters}?$

A 2 **B** 4 **C** 8 **D** 12

Nuclear Physics

9702/11/O/N/14

9702/13/O/N/14

40 Alpha, beta and gamma radiations

- 2 behave differently in an electric field,
- 3 behave differently in a magnetic field.

The diagrams illustrate these behaviours.

Which three labels on these diagrams refer to the same kind of radiation?

A L, P, X **B** L, P, Z **C** M, P, Z **D** N, Q, X

40 The nuclear equation for a fission reaction is shown below.

9702/13/M/J/15

$${}^{235}_{92}U \hspace{.1in} + \hspace{.1in} {}^{1}_{0}n \hspace{.1in} \rightarrow \hspace{.1in} {}^{93}_{X}Rb \hspace{.1in} + \hspace{.1in} {}^{141}_{55}Cs \hspace{.1in} + \hspace{.1in} Y^{1}_{0}n$$

What are the values of X and Y?

	Х	Y
Α	37	0
в	37	1
С	37	2
D	38	2

- 39 A radioactive substance contains a number of identical nuclei that emit β-particles. 9702/12/M/J/15Which property of these nuclei remains unaltered by the emission?
 - A charge
 - B neutron number
 - **c** nucleon number
 - D proton number

40 A uranium-238 nucleus, $^{238}_{92}$ U, undergoes nuclear decays to form uranium-234, $^{234}_{92}$ U.

Which series of decays could give this result?

- **A** emission of four β -particles
- **B** emission of four γ -rays
- **C** emission of one α -particle and two β -particles
- **D** emission of two α -particles and eight β -particles
- **39** When α -particles are directed at gold leaf
 - 1 almost all α -particles pass through without deflection,
 - 2 a few α -particles are deviated through large angles.

What are the reasons for these effects?

	1	2
Α	most α -particles have enough energy to pass right through the gold leaf	gold is very dense so a few low energy $\alpha\mbox{-}particles$ bounce back from the gold surface
В	most α -particles miss all gold atoms	a few $\alpha\text{-particles}$ bounce off gold atoms
С	the gold nucleus is very small so most α -particles miss all nuclei	occasionally the path of an α -particle is close to a nucleus
D	the positive charge in an atom is not concentrated enough to deflect an α -particle	occasionally an α -particle experiences many small deflections in the same direction

9702/11/M/J/15

9702/12/M/J/15